p-group, metabelian, nilpotent (class 3), monomial
Aliases: C23.30D8, C24.146D4, C23.15Q16, C23.28SD16, C22⋊C8⋊6C4, (C2×C4).6C42, C22.32C4≀C2, (C22×C4).22Q8, C23.42(C4⋊C4), C2.C42⋊9C4, (C22×C4).638D4, C22.1(C4.Q8), C2.8(C42⋊6C4), C22.1(C2.D8), C23.7Q8.2C2, C22.34(C23⋊C4), C2.6(C22.4Q16), (C23×C4).192C22, C2.3(C22.SD16), C2.6(C23.9D4), C22.38(D4⋊C4), C23.214(C22⋊C4), C22.28(Q8⋊C4), C2.3(C23.31D4), C22.44(C2.C42), (C2×C4⋊C4)⋊1C4, (C2×C4).70(C4⋊C4), (C2×C22⋊C8).5C2, (C22×C4).149(C2×C4), (C2×C4).299(C22⋊C4), (C2×C2.C42).11C2, SmallGroup(128,26)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.30D8
G = < a,b,c,d,e | a2=b2=c2=d8=1, e2=a, ab=ba, ac=ca, ad=da, ae=ea, dbd-1=ebe-1=bc=cb, cd=dc, ce=ec, ede-1=abd-1 >
Subgroups: 320 in 138 conjugacy classes, 48 normal (34 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C8, C2×C4, C2×C4, C23, C23, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C24, C2.C42, C2.C42, C22⋊C8, C22⋊C8, C2×C22⋊C4, C2×C4⋊C4, C22×C8, C23×C4, C23×C4, C2×C2.C42, C23.7Q8, C2×C22⋊C8, C23.30D8
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C42, C22⋊C4, C4⋊C4, D8, SD16, Q16, C2.C42, C23⋊C4, D4⋊C4, Q8⋊C4, C4≀C2, C4.Q8, C2.D8, C22.SD16, C23.31D4, C42⋊6C4, C22.4Q16, C23.9D4, C23.30D8
(1 21)(2 22)(3 23)(4 24)(5 17)(6 18)(7 19)(8 20)(9 30)(10 31)(11 32)(12 25)(13 26)(14 27)(15 28)(16 29)
(2 10)(4 12)(6 14)(8 16)(18 27)(20 29)(22 31)(24 25)
(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(17 26)(18 27)(19 28)(20 29)(21 30)(22 31)(23 32)(24 25)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 8 21 20)(2 28 22 15)(3 14 23 27)(4 17 24 5)(6 32 18 11)(7 10 19 31)(9 16 30 29)(12 26 25 13)
G:=sub<Sym(32)| (1,21)(2,22)(3,23)(4,24)(5,17)(6,18)(7,19)(8,20)(9,30)(10,31)(11,32)(12,25)(13,26)(14,27)(15,28)(16,29), (2,10)(4,12)(6,14)(8,16)(18,27)(20,29)(22,31)(24,25), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,26)(18,27)(19,28)(20,29)(21,30)(22,31)(23,32)(24,25), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,8,21,20)(2,28,22,15)(3,14,23,27)(4,17,24,5)(6,32,18,11)(7,10,19,31)(9,16,30,29)(12,26,25,13)>;
G:=Group( (1,21)(2,22)(3,23)(4,24)(5,17)(6,18)(7,19)(8,20)(9,30)(10,31)(11,32)(12,25)(13,26)(14,27)(15,28)(16,29), (2,10)(4,12)(6,14)(8,16)(18,27)(20,29)(22,31)(24,25), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,26)(18,27)(19,28)(20,29)(21,30)(22,31)(23,32)(24,25), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,8,21,20)(2,28,22,15)(3,14,23,27)(4,17,24,5)(6,32,18,11)(7,10,19,31)(9,16,30,29)(12,26,25,13) );
G=PermutationGroup([[(1,21),(2,22),(3,23),(4,24),(5,17),(6,18),(7,19),(8,20),(9,30),(10,31),(11,32),(12,25),(13,26),(14,27),(15,28),(16,29)], [(2,10),(4,12),(6,14),(8,16),(18,27),(20,29),(22,31),(24,25)], [(1,9),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16),(17,26),(18,27),(19,28),(20,29),(21,30),(22,31),(23,32),(24,25)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,8,21,20),(2,28,22,15),(3,14,23,27),(4,17,24,5),(6,32,18,11),(7,10,19,31),(9,16,30,29),(12,26,25,13)]])
38 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | ··· | 4N | 4O | 4P | 4Q | 4R | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | - | + | + | - | + | |||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C4 | D4 | Q8 | D4 | D8 | SD16 | Q16 | C4≀C2 | C23⋊C4 |
kernel | C23.30D8 | C2×C2.C42 | C23.7Q8 | C2×C22⋊C8 | C2.C42 | C22⋊C8 | C2×C4⋊C4 | C22×C4 | C22×C4 | C24 | C23 | C23 | C23 | C22 | C22 |
# reps | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 2 | 1 | 1 | 2 | 4 | 2 | 8 | 2 |
Matrix representation of C23.30D8 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
3 | 14 | 0 | 0 | 0 | 0 |
3 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 12 | 0 | 0 |
0 | 0 | 5 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 4 | 0 |
3 | 14 | 0 | 0 | 0 | 0 |
14 | 14 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 5 | 0 | 0 |
0 | 0 | 5 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 16 | 0 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[3,3,0,0,0,0,14,3,0,0,0,0,0,0,5,5,0,0,0,0,12,5,0,0,0,0,0,0,0,4,0,0,0,0,16,0],[3,14,0,0,0,0,14,14,0,0,0,0,0,0,12,5,0,0,0,0,5,5,0,0,0,0,0,0,0,16,0,0,0,0,1,0] >;
C23.30D8 in GAP, Magma, Sage, TeX
C_2^3._{30}D_8
% in TeX
G:=Group("C2^3.30D8");
// GroupNames label
G:=SmallGroup(128,26);
// by ID
G=gap.SmallGroup(128,26);
# by ID
G:=PCGroup([7,-2,2,-2,2,2,-2,2,56,85,120,758,723,184,3924]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^8=1,e^2=a,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,d*b*d^-1=e*b*e^-1=b*c=c*b,c*d=d*c,c*e=e*c,e*d*e^-1=a*b*d^-1>;
// generators/relations